SVR

class ibex.sklearn.svm.SVR(kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)

Bases: sklearn.svm.classes.SVR, ibex._base.FrameMixin

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Note

The documentation following is of the original class wrapped by this class. This class wraps the attribute coef_.

Example:

>>> import pandas as pd
>>> import numpy as np
>>> from ibex.sklearn import datasets
>>> from ibex.sklearn.linear_model import LinearRegression as PdLinearRegression
>>> iris = datasets.load_iris()
>>> features = iris['feature_names']
>>> iris = pd.DataFrame(
...     np.c_[iris['data'], iris['target']],
...     columns=features+['class'])
>>> iris[features]
                sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2
...
>>> from ibex.sklearn import svm as pd_svm
>>>
>>> prd =  pd_svm.SVR(kernel='linear').fit(iris[features], iris['class'])
>>>
>>> prd.coef_
sepal length (cm)   ...
sepal width (cm)    ...
petal length (cm)   ...
petal width (cm)    ...
dtype: float64

Note

The documentation following is of the original class wrapped by this class. This class wraps the attribute intercept_.

Example:

>>> import pandas as pd
>>> import numpy as np
>>> from ibex.sklearn import datasets
>>> from ibex.sklearn.linear_model import LinearRegression as PdLinearRegression
>>> iris = datasets.load_iris()
>>> features = iris['feature_names']
>>> iris = pd.DataFrame(
...     np.c_[iris['data'], iris['target']],
...     columns=features+['class'])
>>> iris[features]
                sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2
...
>>>
>>> from ibex.sklearn import svm as pd_svm
>>>
>>> prd = pd_svm.SVR(kernel='linear').fit(iris[features], iris['class'])
>>>
>>> #scalar intercept
>>> type(prd.intercept_)
<class 'numpy.float64'>

Epsilon-Support Vector Regression.

The free parameters in the model are C and epsilon.

The implementation is based on libsvm.

Read more in the User Guide.

C : float, optional (default=1.0)
Penalty parameter C of the error term.
epsilon : float, optional (default=0.1)
Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value.
kernel : string, optional (default=’rbf’)
Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to precompute the kernel matrix.
degree : int, optional (default=3)
Degree of the polynomial kernel function (‘poly’). Ignored by all other kernels.
gamma : float, optional (default=’auto’)
Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’. If gamma is ‘auto’ then 1/n_features will be used instead.
coef0 : float, optional (default=0.0)
Independent term in kernel function. It is only significant in ‘poly’ and ‘sigmoid’.
shrinking : boolean, optional (default=True)
Whether to use the shrinking heuristic.
tol : float, optional (default=1e-3)
Tolerance for stopping criterion.
cache_size : float, optional
Specify the size of the kernel cache (in MB).
verbose : bool, default: False
Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context.
max_iter : int, optional (default=-1)
Hard limit on iterations within solver, or -1 for no limit.
support_ : array-like, shape = [n_SV]
Indices of support vectors.
support_vectors_ : array-like, shape = [nSV, n_features]
Support vectors.
dual_coef_ : array, shape = [1, n_SV]
Coefficients of the support vector in the decision function.
coef_ : array, shape = [1, n_features]

Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel.

coef_ is readonly property derived from dual_coef_ and support_vectors_.

intercept_ : array, shape = [1]
Constants in decision function.
sample_weight : array-like, shape = [n_samples]
Individual weights for each sample
>>> from sklearn.svm import SVR
>>> import numpy as np
>>> n_samples, n_features = 10, 5
>>> np.random.seed(0)
>>> y = np.random.randn(n_samples)
>>> X = np.random.randn(n_samples, n_features)
>>> clf = SVR(C=1.0, epsilon=0.2)
>>> clf.fit(X, y) 
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto',
    kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
NuSVR
Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors.
LinearSVR
Scalable Linear Support Vector Machine for regression implemented using liblinear.
fit(X, y, sample_weight=None)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Fit the SVM model according to the given training data.

X : {array-like, sparse matrix}, shape (n_samples, n_features)
Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples).
y : array-like, shape (n_samples,)
Target values (class labels in classification, real numbers in regression)
sample_weight : array-like, shape (n_samples,)
Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points.
self : object
Returns self.

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

predict(X)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Perform regression on samples in X.

For an one-class model, +1 (inlier) or -1 (outlier) is returned.

X : {array-like, sparse matrix}, shape (n_samples, n_features)
For kernel=”precomputed”, the expected shape of X is (n_samples_test, n_samples_train).

y_pred : array, shape (n_samples,)

score(X, y, sample_weight=None)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
score : float
R^2 of self.predict(X) wrt. y.