LassoLarsCV

class ibex.sklearn.linear_model.LassoLarsCV(fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=1, eps=2.220446049250313e-16, copy_X=True, positive=False)

Bases: sklearn.linear_model.least_angle.LassoLarsCV, ibex._base.FrameMixin

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Note

The documentation following is of the original class wrapped by this class. This class wraps the attribute coef_.

Example:

>>> import pandas as pd
>>> import numpy as np
>>> from ibex.sklearn import datasets
>>> from ibex.sklearn.linear_model import LinearRegression as PdLinearRegression
>>> iris = datasets.load_iris()
>>> features = iris['feature_names']
>>> iris = pd.DataFrame(
...     np.c_[iris['data'], iris['target']],
...     columns=features+['class'])
>>> iris[features]
                sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2
...
>>> from ibex.sklearn import linear_model as pd_linear_model
>>>
>>> prd =  pd_linear_model.LassoLarsCV().fit(iris[features], iris['class'])
>>>
>>> prd.coef_
sepal length (cm)   ...
sepal width (cm)    ...
petal length (cm)   ...
petal width (cm)    ...
dtype: float64

Note

The documentation following is of the original class wrapped by this class. This class wraps the attribute intercept_.

Example:

>>> import pandas as pd
>>> import numpy as np
>>> from ibex.sklearn import datasets
>>> from ibex.sklearn.linear_model import LinearRegression as PdLinearRegression
>>> iris = datasets.load_iris()
>>> features = iris['feature_names']
>>> iris = pd.DataFrame(
...     np.c_[iris['data'], iris['target']],
...     columns=features+['class'])
>>> iris[features]
                sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2
...
>>>
>>> from ibex.sklearn import linear_model as pd_linear_model
>>>
>>> prd = pd_linear_model.LassoLarsCV().fit(iris[features], iris['class'])
>>>
>>> #scalar intercept
>>> type(prd.intercept_)
<class 'numpy.float64'>

Cross-validated Lasso, using the LARS algorithm

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1

Read more in the User Guide.

fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
verbose : boolean or integer, optional
Sets the verbosity amount
max_iter : integer, optional
Maximum number of iterations to perform.
normalize : boolean, optional, default True
This parameter is ignored when fit_intercept is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use sklearn.preprocessing.StandardScaler before calling fit on an estimator with normalize=False.
precompute : True | False | ‘auto’
Whether to use a precomputed Gram matrix to speed up calculations. If set to 'auto' let us decide. The Gram matrix cannot be passed as argument since we will use only subsets of X.
cv : int, cross-validation generator or an iterable, optional

Determines the cross-validation splitting strategy. Possible inputs for cv are:

  • None, to use the default 3-fold cross-validation,
  • integer, to specify the number of folds.
  • An object to be used as a cross-validation generator.
  • An iterable yielding train/test splits.

For integer/None inputs, KFold is used.

Refer User Guide for the various cross-validation strategies that can be used here.

max_n_alphas : integer, optional
The maximum number of points on the path used to compute the residuals in the cross-validation
n_jobs : integer, optional
Number of CPUs to use during the cross validation. If -1, use all the CPUs
eps : float, optional
The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
positive : boolean (default=False)
Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (alphas_[alphas_ > 0.].min() when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsCV only makes sense for problems where a sparse solution is expected and/or reached.
coef_ : array, shape (n_features,)
parameter vector (w in the formulation formula)
intercept_ : float
independent term in decision function.
coef_path_ : array, shape (n_features, n_alphas)
the varying values of the coefficients along the path
alpha_ : float
the estimated regularization parameter alpha
alphas_ : array, shape (n_alphas,)
the different values of alpha along the path
cv_alphas_ : array, shape (n_cv_alphas,)
all the values of alpha along the path for the different folds
mse_path_ : array, shape (n_folds, n_cv_alphas)
the mean square error on left-out for each fold along the path (alpha values given by cv_alphas)
n_iter_ : array-like or int
the number of iterations run by Lars with the optimal alpha.

The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets.

It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features.

lars_path, LassoLars, LarsCV, LassoCV

fit(X, y)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Fit the model using X, y as training data.

X : array-like, shape (n_samples, n_features)
Training data.
y : array-like, shape (n_samples,)
Target values.
self : object
returns an instance of self.
predict(X)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Predict using the linear model

X : {array-like, sparse matrix}, shape = (n_samples, n_features)
Samples.
C : array, shape = (n_samples,)
Returns predicted values.
score(X, y, sample_weight=None)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
score : float
R^2 of self.predict(X) wrt. y.