Source code for sklearn.manifold.isomap

"""Isomap for manifold learning"""

# Author: Jake Vanderplas  -- <vanderplas@astro.washington.edu>
# License: BSD 3 clause (C) 2011

import numpy as np
from ..base import BaseEstimator, TransformerMixin
from ..neighbors import NearestNeighbors, kneighbors_graph
from ..utils import check_array
from ..utils.graph import graph_shortest_path
from ..decomposition import KernelPCA
from ..preprocessing import KernelCenterer


class Isomap(BaseEstimator, TransformerMixin):
    """Isomap Embedding

    Non-linear dimensionality reduction through Isometric Mapping

    Read more in the :ref:`User Guide <isomap>`.

    Parameters
    ----------
    n_neighbors : integer
        number of neighbors to consider for each point.

    n_components : integer
        number of coordinates for the manifold

    eigen_solver : ['auto'|'arpack'|'dense']
        'auto' : Attempt to choose the most efficient solver
        for the given problem.

        'arpack' : Use Arnoldi decomposition to find the eigenvalues
        and eigenvectors.

        'dense' : Use a direct solver (i.e. LAPACK)
        for the eigenvalue decomposition.

    tol : float
        Convergence tolerance passed to arpack or lobpcg.
        not used if eigen_solver == 'dense'.

    max_iter : integer
        Maximum number of iterations for the arpack solver.
        not used if eigen_solver == 'dense'.

    path_method : string ['auto'|'FW'|'D']
        Method to use in finding shortest path.

        'auto' : attempt to choose the best algorithm automatically.

        'FW' : Floyd-Warshall algorithm.

        'D' : Dijkstra's algorithm.

    neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree']
        Algorithm to use for nearest neighbors search,
        passed to neighbors.NearestNeighbors instance.

    n_jobs : int, optional (default = 1)
        The number of parallel jobs to run.
        If ``-1``, then the number of jobs is set to the number of CPU cores.

    Attributes
    ----------
    embedding_ : array-like, shape (n_samples, n_components)
        Stores the embedding vectors.

    kernel_pca_ : object
        `KernelPCA` object used to implement the embedding.

    training_data_ : array-like, shape (n_samples, n_features)
        Stores the training data.

    nbrs_ : sklearn.neighbors.NearestNeighbors instance
        Stores nearest neighbors instance, including BallTree or KDtree
        if applicable.

    dist_matrix_ : array-like, shape (n_samples, n_samples)
        Stores the geodesic distance matrix of training data.

    References
    ----------

    .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric
           framework for nonlinear dimensionality reduction. Science 290 (5500)
    """

    def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto',
                 tol=0, max_iter=None, path_method='auto',
                 neighbors_algorithm='auto', n_jobs=1):
        self.n_neighbors = n_neighbors
        self.n_components = n_components
        self.eigen_solver = eigen_solver
        self.tol = tol
        self.max_iter = max_iter
        self.path_method = path_method
        self.neighbors_algorithm = neighbors_algorithm
        self.n_jobs = n_jobs

    def _fit_transform(self, X):
        X = check_array(X)
        self.nbrs_ = NearestNeighbors(n_neighbors=self.n_neighbors,
                                      algorithm=self.neighbors_algorithm,
                                      n_jobs=self.n_jobs)
        self.nbrs_.fit(X)
        self.training_data_ = self.nbrs_._fit_X
        self.kernel_pca_ = KernelPCA(n_components=self.n_components,
                                     kernel="precomputed",
                                     eigen_solver=self.eigen_solver,
                                     tol=self.tol, max_iter=self.max_iter,
                                     n_jobs=self.n_jobs)

        kng = kneighbors_graph(self.nbrs_, self.n_neighbors,
                               mode='distance', n_jobs=self.n_jobs)

        self.dist_matrix_ = graph_shortest_path(kng,
                                                method=self.path_method,
                                                directed=False)
        G = self.dist_matrix_ ** 2
        G *= -0.5

        self.embedding_ = self.kernel_pca_.fit_transform(G)

    def reconstruction_error(self):
        """Compute the reconstruction error for the embedding.

        Returns
        -------
        reconstruction_error : float

        Notes
        -------
        The cost function of an isomap embedding is

        ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples``

        Where D is the matrix of distances for the input data X,
        D_fit is the matrix of distances for the output embedding X_fit,
        and K is the isomap kernel:

        ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)``
        """
        G = -0.5 * self.dist_matrix_ ** 2
        G_center = KernelCenterer().fit_transform(G)
        evals = self.kernel_pca_.lambdas_
        return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0]

[docs] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. y: Ignored. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self
[docs] def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. y: Ignored. Returns ------- X_new : array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_
[docs] def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X_new : array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) # Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. # This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)