PassiveAggressiveRegressor

class ibex.sklearn.linear_model.PassiveAggressiveRegressor(C=1.0, fit_intercept=True, max_iter=None, tol=None, shuffle=True, verbose=0, loss='epsilon_insensitive', epsilon=0.1, random_state=None, warm_start=False, average=False, n_iter=None)

Bases: sklearn.linear_model.passive_aggressive.PassiveAggressiveRegressor, ibex._base.FrameMixin

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Note

The documentation following is of the original class wrapped by this class. This class wraps the attribute coef_.

Example:

>>> import pandas as pd
>>> import numpy as np
>>> from ibex.sklearn import datasets
>>> from ibex.sklearn.linear_model import LinearRegression as PdLinearRegression
>>> iris = datasets.load_iris()
>>> features = iris['feature_names']
>>> iris = pd.DataFrame(
...     np.c_[iris['data'], iris['target']],
...     columns=features+['class'])
>>> iris[features]
                sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2
...
>>> from ibex.sklearn import linear_model as pd_linear_model
>>>
>>> prd =  pd_linear_model.PassiveAggressiveRegressor().fit(iris[features], iris['class'])
>>>
>>> prd.coef_
sepal length (cm)   ...
sepal width (cm)    ...
petal length (cm)   ...
petal width (cm)    ...
dtype: float64

Note

The documentation following is of the original class wrapped by this class. This class wraps the attribute intercept_.

Example:

>>> import pandas as pd
>>> import numpy as np
>>> from ibex.sklearn import datasets
>>> from ibex.sklearn.linear_model import LinearRegression as PdLinearRegression
>>> iris = datasets.load_iris()
>>> features = iris['feature_names']
>>> iris = pd.DataFrame(
...     np.c_[iris['data'], iris['target']],
...     columns=features+['class'])
>>> iris[features]
                sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2
...
>>>
>>> from ibex.sklearn import linear_model as pd_linear_model
>>>
>>> prd = pd_linear_model.PassiveAggressiveRegressor().fit(iris[features], iris['class'])
>>>
>>> #scalar intercept
>>> type(prd.intercept_)
<class 'numpy.float64'>

Passive Aggressive Regressor

Read more in the User Guide.

C : float
Maximum step size (regularization). Defaults to 1.0.
fit_intercept : bool
Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True.
max_iter : int, optional

The maximum number of passes over the training data (aka epochs). It only impacts the behavior in the fit method, and not the partial_fit. Defaults to 5. Defaults to 1000 from 0.21, or if tol is not None.

New in version 0.19.

tol : float or None, optional

The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol). Defaults to None. Defaults to 1e-3 from 0.21.

New in version 0.19.

shuffle : bool, default=True
Whether or not the training data should be shuffled after each epoch.
verbose : integer, optional
The verbosity level
loss : string, optional
The loss function to be used: epsilon_insensitive: equivalent to PA-I in the reference paper. squared_epsilon_insensitive: equivalent to PA-II in the reference paper.
epsilon : float
If the difference between the current prediction and the correct label is below this threshold, the model is not updated.
random_state : int, RandomState instance or None, optional, default=None
The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
warm_start : bool, optional
When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution.
average : bool or int, optional

When set to True, computes the averaged SGD weights and stores the result in the coef_ attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples.

New in version 0.19: parameter average to use weights averaging in SGD

n_iter : int, optional

The number of passes over the training data (aka epochs). Defaults to None. Deprecated, will be removed in 0.21.

Changed in version 0.19: Deprecated

coef_ : array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]
Weights assigned to the features.
intercept_ : array, shape = [1] if n_classes == 2 else [n_classes]
Constants in decision function.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
>>> from sklearn.linear_model import PassiveAggressiveRegressor
>>> from sklearn.datasets import make_regression
>>>
>>> X, y = make_regression(n_features=4, random_state=0)
>>> regr = PassiveAggressiveRegressor(random_state=0)
>>> regr.fit(X, y)
PassiveAggressiveRegressor(C=1.0, average=False, epsilon=0.1,
              fit_intercept=True, loss='epsilon_insensitive',
              max_iter=None, n_iter=None, random_state=0, shuffle=True,
              tol=None, verbose=0, warm_start=False)
>>> print(regr.coef_)
[ 20.48736655  34.18818427  67.59122734  87.94731329]
>>> print(regr.intercept_)
[-0.02306214]
>>> print(regr.predict([[0, 0, 0, 0]]))
[-0.02306214]

SGDRegressor

Online Passive-Aggressive Algorithms <http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf> K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz, Y. Singer - JMLR (2006)

fit(X, y, coef_init=None, intercept_init=None)[source]

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Fit linear model with Passive Aggressive algorithm.

X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Training data
y : numpy array of shape [n_samples]
Target values
coef_init : array, shape = [n_features]
The initial coefficients to warm-start the optimization.
intercept_init : array, shape = [1]
The initial intercept to warm-start the optimization.

self : returns an instance of self.

partial_fit(X, y)[source]

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Fit linear model with Passive Aggressive algorithm.

X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Subset of training data
y : numpy array of shape [n_samples]
Subset of target values

self : returns an instance of self.

predict(X)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Predict using the linear model

X : {array-like, sparse matrix}, shape (n_samples, n_features)

array, shape (n_samples,)
Predicted target values per element in X.
score(X, y, sample_weight=None)

Note

The documentation following is of the class wrapped by this class. There are some changes, in particular:

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
score : float
R^2 of self.predict(X) wrt. y.