Source code for sklearn.decomposition.sparse_pca

"""Matrix factorization with Sparse PCA"""
# Author: Vlad Niculae, Gael Varoquaux, Alexandre Gramfort
# License: BSD 3 clause

import warnings

import numpy as np

from ..utils import check_random_state, check_array
from ..utils.validation import check_is_fitted
from ..linear_model import ridge_regression
from ..base import BaseEstimator, TransformerMixin
from .dict_learning import dict_learning, dict_learning_online


class SparsePCA(BaseEstimator, TransformerMixin):
    """Sparse Principal Components Analysis (SparsePCA)

    Finds the set of sparse components that can optimally reconstruct
    the data.  The amount of sparseness is controllable by the coefficient
    of the L1 penalty, given by the parameter alpha.

    Read more in the :ref:`User Guide <SparsePCA>`.

    Parameters
    ----------
    n_components : int,
        Number of sparse atoms to extract.

    alpha : float,
        Sparsity controlling parameter. Higher values lead to sparser
        components.

    ridge_alpha : float,
        Amount of ridge shrinkage to apply in order to improve
        conditioning when calling the transform method.

    max_iter : int,
        Maximum number of iterations to perform.

    tol : float,
        Tolerance for the stopping condition.

    method : {'lars', 'cd'}
        lars: uses the least angle regression method to solve the lasso problem
        (linear_model.lars_path)
        cd: uses the coordinate descent method to compute the
        Lasso solution (linear_model.Lasso). Lars will be faster if
        the estimated components are sparse.

    n_jobs : int,
        Number of parallel jobs to run.

    U_init : array of shape (n_samples, n_components),
        Initial values for the loadings for warm restart scenarios.

    V_init : array of shape (n_components, n_features),
        Initial values for the components for warm restart scenarios.

    verbose : int
        Controls the verbosity; the higher, the more messages. Defaults to 0.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    components_ : array, [n_components, n_features]
        Sparse components extracted from the data.

    error_ : array
        Vector of errors at each iteration.

    n_iter_ : int
        Number of iterations run.

    See also
    --------
    PCA
    MiniBatchSparsePCA
    DictionaryLearning
    """
    def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01,
                 max_iter=1000, tol=1e-8, method='lars', n_jobs=1, U_init=None,
                 V_init=None, verbose=False, random_state=None):
        self.n_components = n_components
        self.alpha = alpha
        self.ridge_alpha = ridge_alpha
        self.max_iter = max_iter
        self.tol = tol
        self.method = method
        self.n_jobs = n_jobs
        self.U_init = U_init
        self.V_init = V_init
        self.verbose = verbose
        self.random_state = random_state

[docs] def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : Ignored. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = check_array(X) if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components code_init = self.V_init.T if self.V_init is not None else None dict_init = self.U_init.T if self.U_init is not None else None Vt, _, E, self.n_iter_ = dict_learning(X.T, n_components, self.alpha, tol=self.tol, max_iter=self.max_iter, method=self.method, n_jobs=self.n_jobs, verbose=self.verbose, random_state=random_state, code_init=code_init, dict_init=dict_init, return_n_iter=True ) self.components_ = Vt.T self.error_ = E return self
[docs] def transform(self, X, ridge_alpha='deprecated'): """Least Squares projection of the data onto the sparse components. To avoid instability issues in case the system is under-determined, regularization can be applied (Ridge regression) via the `ridge_alpha` parameter. Note that Sparse PCA components orthogonality is not enforced as in PCA hence one cannot use a simple linear projection. Parameters ---------- X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model. ridge_alpha : float, default: 0.01 Amount of ridge shrinkage to apply in order to improve conditioning. .. deprecated:: 0.19 This parameter will be removed in 0.21. Specify ``ridge_alpha`` in the ``SparsePCA`` constructor. Returns ------- X_new array, shape (n_samples, n_components) Transformed data. """ check_is_fitted(self, 'components_') X = check_array(X) if ridge_alpha != 'deprecated': warnings.warn("The ridge_alpha parameter on transform() is " "deprecated since 0.19 and will be removed in 0.21. " "Specify ridge_alpha in the SparsePCA constructor.", DeprecationWarning) if ridge_alpha is None: ridge_alpha = self.ridge_alpha else: ridge_alpha = self.ridge_alpha U = ridge_regression(self.components_.T, X.T, ridge_alpha, solver='cholesky') s = np.sqrt((U ** 2).sum(axis=0)) s[s == 0] = 1 U /= s return U
class MiniBatchSparsePCA(SparsePCA): """Mini-batch Sparse Principal Components Analysis Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness is controllable by the coefficient of the L1 penalty, given by the parameter alpha. Read more in the :ref:`User Guide <SparsePCA>`. Parameters ---------- n_components : int, number of sparse atoms to extract alpha : int, Sparsity controlling parameter. Higher values lead to sparser components. ridge_alpha : float, Amount of ridge shrinkage to apply in order to improve conditioning when calling the transform method. n_iter : int, number of iterations to perform for each mini batch callback : callable or None, optional (default: None) callable that gets invoked every five iterations batch_size : int, the number of features to take in each mini batch verbose : int Controls the verbosity; the higher, the more messages. Defaults to 0. shuffle : boolean, whether to shuffle the data before splitting it in batches n_jobs : int, number of parallel jobs to run, or -1 to autodetect. method : {'lars', 'cd'} lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- components_ : array, [n_components, n_features] Sparse components extracted from the data. error_ : array Vector of errors at each iteration. n_iter_ : int Number of iterations run. See also -------- PCA SparsePCA DictionaryLearning """ def __init__(self, n_components=None, alpha=1, ridge_alpha=0.01, n_iter=100, callback=None, batch_size=3, verbose=False, shuffle=True, n_jobs=1, method='lars', random_state=None): super(MiniBatchSparsePCA, self).__init__( n_components=n_components, alpha=alpha, verbose=verbose, ridge_alpha=ridge_alpha, n_jobs=n_jobs, method=method, random_state=random_state) self.n_iter = n_iter self.callback = callback self.batch_size = batch_size self.shuffle = shuffle
[docs] def fit(self, X, y=None): """Fit the model from data in X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : Ignored. Returns ------- self : object Returns the instance itself. """ random_state = check_random_state(self.random_state) X = check_array(X) if self.n_components is None: n_components = X.shape[1] else: n_components = self.n_components Vt, _, self.n_iter_ = dict_learning_online( X.T, n_components, alpha=self.alpha, n_iter=self.n_iter, return_code=True, dict_init=None, verbose=self.verbose, callback=self.callback, batch_size=self.batch_size, shuffle=self.shuffle, n_jobs=self.n_jobs, method=self.method, random_state=random_state, return_n_iter=True) self.components_ = Vt.T return self